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This project strives to predict the length of stay (LoS) of admitted patients We use a modified SMOTE (Synthetic Minority Oversampling Technique) to Classification (Best Fold) Confusion Matrix
from electronic health record (EHR) data, a crucial factor for efficiently balance the datal®l. Instead of simply oversampling the minority class (long stays),
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classification-regression pipeline to predict the LoS of the respective patient. random ¢ € (0, 1). This procedure is repeated until the dataset is balanced, with S o bt o o F
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Data & Feature Enginee ri ng We designed a classification-regression pipeline to increase regression The Ensemble model of random forest and
performance especially for long (> 4 days) stays. We tried four models (Logistic XGBoost performs best in four of the five TP
We created our dataset from 30 GB of MIMIC-IV data by joining tables by Regression, XGBoost, Ensemble, Neural Network) and selected the metrios @bove and has the highest AU as
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training examples, 30836 validation examples, and 27753 test examples. The &y ’
LoS range is limited to between 1 and 15 days, calculated from the admission L(y,p) = —% Z[yz' log(p;)+(1—y;) log(1—p;)], odds (TPR and FPR) for gender and race.
and discharge times. i=1 Groups TPR FPR TNR FNR PR 3
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The features selected for the regression task consist of categorical data (race, Regression (Best Fold)
gender, insurance type, admission location, etc.) in one-hot encoding, P Regressor  RMSE VAT R2 Prediction RMSE by Actual LoS (every 0.5 days)
desensitized numerical values such as age grouped by Medical Subject Pre-processing <_ Class >—Long—~ Re;::sgsor — e e
Headings (MeSH) definitions, and individual patient diagnoses converted to N 7 SGD. 253(233) 1.84(1.68) 0.29(039) | Cissification-Regression
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while a = B = 0.5 for ElasticNet, which combines Ridge and Lasso regularization.
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of additional computational complexity, though still relatively efficient.
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Our multi-stage pipeline approach reduced regression error effectively
compared to baselines. However, this may still not be accurate enough in
the medical setting, especially for longer stays.
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