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1 Introduction
Accurately predicting the length of stay (LoS) of admitted patients to the intensive care unit (ICU) from electronic
health record (EHR) data is a relevant and growing area of research. The COVID-19 pandemic placed unprecedented
stress on hospital-based care across the United States and called to attention the need to efficiently manage healthcare
capacities and resources (Wu et al., 2020). Recognizing LoS as a crucial random variable that has been investigated
in Statistics and Operational Research since the 1970s to aid such planning (Stone et al., 2022), this project applies
machine learning methods to the Medical Information Mart for Intensive Care, version 4 (MIMIC-IV), a popular EHR
dataset available containing de-identified health information from patients admitted to Beth Israel Deaconess Medical
Center (Johnson et al., 2023a,b).

To predict a patient’s LoS, we use both categorical and numerical characteristics of patients (e.g., sex, age, diagnoses,
laboratory results) as input, and apply a cohort classifier and then respective regressors in a step-wise approach. Different
algorithms such as logistic regression, decision tree, ensemble, random forest, and XGBoost, are used and evaluated.
We also aimed at making the training process of our predictor quick on consumer-level desktop computers and laptops,
such that our methodology will be accessible to researchers and providers of all scales. Finally, we recognize the
importance of fairness in our LoS prediction and evaluate our model across different demographic sub-groups.

2 Related Work
Many recent studies use the MIMIC raw data and machine learning methods for hospital-based predictions. A 2019
paper in Nature presents “strong linear and neural baselines” for four clinical prediction benchmarks on MIMIC-III
data, one of which is LoS forecasting. The mean absolute deviation (MAD) in unit of days after conversion is 4.85
for baseline linear regression and at best 3.92 from a channel-wise long short-term memory (LSTM) neural network
with deep supervision (Harutyunyan et al., 2019). The authors report that their results for LoS forecasting are the worst
among the four benchmarks due to the intrinsic difficulty of the task, and note that even small LSTMs easily overfit on
this task.

Due to the difficulty of predicting LoS directly, many studies instead seek to separate long stays (that present most stress
on healthcare providers) from short stays or do so first in a multistep approach. Hempel et al. (2023) predict whether
the stay will be short or long (more than 4 days) with 81% classification accuracy (F1 score 0.442) using random forest
and predict LoS only for data classified as short stays with RMSE of 1.13; predictions are poor when the actual LoS
is longer. Harerimana et al. (2021) uses a deep attention model with pre-trained medical embeddings to classify LoS
into three classes with 86% accuracy (F1 score 0.2441). These works note that due to the highly imbalanced nature
of the data, accuracy is an inadequate metric: even a 95% classification accuracy does not enable good predictions
of long stays, which is the minority class. The state-of-the-art for LoS prediction lies in NLP understanding using
pre-trained large language models (LLMs). van Aken et al. (2021) reports that BioBERT performs well on a 4-classes
LoS classification task while fine-tuning yields further gains. However, we limit our research to traditional ML models
in this project to exploit their cost advantage over more advanced methods.

Other works using MIMIC illustrate good approaches for working with the data in general. (Sun et al., 2023), focusing
on mortality prediction, identify that LASSO and XGBoost as useful for feature selection. Gupta et al. (2022) note
the issues in unprocessed and uncleaned MIMIC data and offer a configurable pipeline that prepares MIMIC-IV for
downstream tasks. As it was built for an older version of the data, their code is not used in this project. Nevertheless,
ideas such as outlier removal, dimensionality reduction, etc. informed our approach as did other insights reported in this
section.



3 Dataset & Features
MIMIC-IV v2.2 has 32 separate CSV files in its raw form, each containing information such as admission records,
microbiology cultures, medication administration, and billed diagnoses. To build a dataset we can work with, we first
inner joint tables by both patient and admission ID (eliminating most incomplete entries in the process) and preliminarily
kept most features based on domain knowledge.

Figure 1: Feature processing on MIMIC-IV v2.2 dataset.

Categorical variables such as gender, race, and admission type are encoded in either binary or one-hot form. In particular,
individual patient diagnoses in ICD-9 and ICD-10 codes are converted to 19 categories based on the International
Classification of Diseases and Related Health Problems standard (WHO, 1977; Bailey et al., 2019). We also calculated
desensitized information such as age from “anchored” entries and the admitted time (also desensitized). These are
converted into age groups based on definitions from NLM (1998). Though Multiple Correspondence Analysis (MCA)
was used at one point to reduce excess dimensionality in categorical data, ultimately the features selected are not as
sparse as we expected. Because we want to predict LoS from mostly the initial information gathered at admission,
microbiology or lab events after admission were excluded.

Our experiments with baseline algorithms significantly guided feature engineering. After running tests with LASSO
and ElasticNet, which is a regularized GLM combining LASSO and Ridge where θ∗ := argminθ ∥y −Xθ∥2 +

λ2 ∥θ∥2 + λ1 ∥θ∥1, features with regression coefficients of zero are dropped after verifying they caused no performance
degradation to other algorithms (e.g., marital status). Invalid entries such as deaths during hospitalization are removed.
Furthermore, continuous numerical features such as temperature and heart rate are determined to contain impossible
outliers, thus values above the 95th or below the 5th percentile are clamped to the range. We then compute the length of
time where heart rate, respiratory rate, and temperature are measured to be normal or abnormal in the first 24 hours and
normalize each category to sum to 1, also balancing out the numerical data with the categorical one-hot encodings.

We perform 10-fold cross-validation on the MIMIC dataset, using an 80%-20% training-validation split, and additionally
randomly select 10% of the training data as test data to report our final results. In the end, we have 249772 training
examples, 30836 validation examples, and 27753 test examples.

4 Methods
Table 1: Baseline Regression Performance (RMSE)

Baseline OLS (with Ridge) LASSO ElasticNet SGD Regressor NN XGBoost

Validation 3.1416 3.1692 3.1544 3.1499 3.0868 3.04795

Figure 2: Learning curves of baselines.

From preliminary experiments, simply applying
common regression algorithms and a neural net-
work with 4 hidden layers we designed performed
poorly as shown in Table 1. Moreover, though
some learners could achieve lower asymptotic
training loss, we found that validation loss stopped
decreasing long before, indicative of overfitting
on training data shown in Figure 2.

We surmised that the reason for poor regression
performance was that the available examples are
highly imbalanced as discussed in Hempel et al.
(2023) (shown by Figure 3). Regressors fitted
directly on the whole dataset fail badly on the
minority long-stay cases, as shown in Figure 4.
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Figure 3: Histogram of LoS Figure 4: Linear Regression RMSE by LoS

4.1 Addressing Imbalance via Synthetic Oversampling

Aiming to overcome these challenges and go beyond the literature to predict LoS across the entire range, we initially
reweighted the minority class through oversampling motivated by Problem 4 on Problem Set 2. Out of S short-stay
(≤ 4 days) examples and L long-stay (> 4 days) examples, we can oversample the long-stays to achieve better balanced
accuracy Ā := 1

2 (A0 +A1) :=
1
2 (

TP
TP+FN + TN

TN+FP ) where TP, FP, TN, FN stand for the true positive, false positive,
true negative, and false negative count, respectively. In our case, the long stay category is positive and the short stay is
negative.

We then adopted a more sophisticated method that improves the balanced accuracy and the recall for the minority class.
Simply duplicating examples from the minority class does not provide new information about the data. Instead, SMOTE
(Synthetic Minority Oversampling Technique) synthesizes new examples from the existing ones (Chawla et al., 2002).
Modifying Chawla et al.’s original algorithm, we take k = 5 and consider the k nearest neighbors for each example x(i)

in the minority class. Let N = ⌊S
L⌋. For R = S−N ·L iterations we use N and we use N ′ = N − 1 for the remaining.

Now, we randomly select N (or N ′) of the k neighbors considered, denoted x(in) for n = 1, . . . , N . For each selection,
we generate a new example x̃(in) = α · x(i) + (1−α)x(in) for some α ∈ (0, 1). In other words, we take some point on
the line segment joining x(i) and x(in) and add it to our sample space. In the end, we get a balanced distribution.

4.2 The Classification-Regression Pipeline

Figure 5: Classification-Regression model pipeline.

Motivated by previous literature focusing on clas-
sification, we postulated that prediction accuracy
could be improved if we obtain a robust classifier
separating longer stays from shorter stays, allowing
the use of multiple accurate regressors each trained
on one class of examples.

We evaluated multiple classifiers (logistic regres-
sion, XGBoost, Ensemble, and neural network) for
short stays (0) vs. long stays (1). For all models, we
use the binary logistic (cross-entropy) loss function

L(y, p) = − 1

N

N∑
i=1

[yi log(pi)+(1−yi) log(1−pi)],

where p contains the predicted probabilities and y contains the corresponding true labels in {0, 1}. XGBoost is a
gradient boosting algorithm with L1 regularization weight α = 10. We end up with a 30% sampling of features used in
building each tree, a maximum depth of 30, and 100 trees to be built as our hyperparameters. Ensemble learns the best
weight for F (x) = w1f1(x) +w2f2(x) +w3f3(x) where f1 is a random forest model, f2 is XGBoost, and f3 is a soft
voting classifier. The neural net we use has an output activation function using sigmoid f(x) = 1

1+exp(−x) and three
layers of ReLU g(x) = max(0, x).
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Using the best classification model, we assign our input to go through different regressors, as outlined in Figure 5. The
three regressors considered are SGD (stochastic gradient descent) with MSE loss, ElasticNet as previously introduced,
and XGBoost using MSE and L1 regularization. To perform regression, each tree in XGBoost predicts a continuous
value by averaging those given by the confines of each leaf node and each successive tree learns from the combined
errors of the previous ones. We obtain a short, long, and general regressor by training these models on the examples
with short stays, those with long stays, and the whole dataset. For each type of regressor, we take the probabilities p
rather than the classes themselves and send inputs with p > 0.7 to the long regressor, inputs with p < 0.3 to the short
regressor, and everything else to the general regressor.

5 Experiments & Results

We first identify the best classifier for predicting short (≤ 4 days) or long (> 4 days) stays. Because our original dataset
is highly unbalanced, our main evaluation metric is balanced accuracy and recall, though accuracy, precision, and F1
score are also presented in Table 2. Based on this, the ensemble classifier outperformed the rest on four of the five
metrics (in particular, on balanced accuracy and recall). The ensemble also displayed the highest AUC as shown in
Figure 7, so the model of choice for the complete pipeline was the ensemble model.

Table 2: Classification Performance
Model Accuracy Balanced

Accuracy
Precision Recall F1 Score

Logistic 0.71 0.70 0.75 0.74 0.74
XGBoost 0.72 0.71 0.74 0.80 0.77
Ensemble 0.72 0.71 0.74 0.81 0.77
NN 0.72 0.71 0.76 0.77 0.76

Table 3: Regression Metrics. Test and (train) results

Regressor RMSE MAE R2

SGD 2.53 (2.33) 1.84 (1.68) 0.29 (0.39)

ElasticNet 2.56 (2.29) 1.87 (1.68) 0.27 (0.41)

XGBoost 2.52 (2.28) 1.83 (1.65) 0.29 (0.42)

Our accuracy is lower than that presented by Harerimana et al. (2021) as we opted to increase the balanced accuracy
that supports the downstream regression task, specifically aiming to reduce false negatives (FN), long stay examples
incorrectly classified as short stays, which will suffer from large regression errors. Our F1 score, on the other hand, is
way higher than that of Harerimana et al. (2021).

When combined, the best Classification-Regression predictor obtained via 10-fold cross-validation is the ensemble
classifier combined with an XGBoost regressor as shown in Table 1. This model outperforms baseline models presented
earlier across the input range, especially for long stays, as compared in Figure 6. In addition, the root mean square
error (RMSE) for short stays remains stable under two days. Error in predicting LoS increases almost monotonically as
actual LoS increases, aligning with the expected randomness of the stochastic process.

Figure 6: Classification-Regression’s RMSE by LoS, lower is better Figure 7: ROC Curves of each classifier
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Our pipeline’s best mean absolute error (MAE) of 1.80 shows a great improvement over the performance of the strongest
neural baseline (MAE 3.92) reported by Harutyunyan et al. (2019). However, it should be noted that the multitask
LSTM was learning four tasks at once and did not address highly skewed data that we investigated and focused on.

We observed consistent performance from Classification-Regression on different subsets of data during cross-validation,
suggesting that the model is not overfitting onto any particular training data; additionally, weight values obtained were
of varying reasonable magnitudes.

6 Fairness Analysis
We evaluate the ensemble classifier’s true positive rate, false positive rate, true negative rate, false negative rate, and
overall positive rate (TPR, FPR, TNR, FNR, and PR) for each sub-group separated by gender and race, presented
in Table 4 to discuss algorithmic fairness. We also have the confusion matrix from the classification in Figure 6 for
visualization.

Table 4: Prediction Rates by Gender and Race

Groups TPR FPR TNR FNR PR
Female 0.577 0.186 0.814 0.423 0.344
Male 0.645 0.222 0.778 0.355 0.412

Asian 0.510 0.161 0.839 0.490 0.310
Black/African-American 0.587 0.171 0.829 0.413 0.340
Hispanic/Latino 0.534 0.161 0.839 0.466 0.295
White 0.618 0.214 0.786 0.382 0.387
Other/Unknown 0.675 0.214 0.786 0.325 0.431

Figure 8: Classifier Confusion Matrix.

For reference, we use the formulas TPR = TP
TP+FN , FPR = FP

FP+TN , TNR = TN
TN+FP , FNR = FN

FN+TP , and
PR = TP+FP

TP+FP+TN+FN . Demographic parity holds when PR is comparable among different sub-groups separated by
a particular attribute. This means that our model is equally likely to predict a long stay for any given group. The PR is
indeed pretty close across genders. There is more variation among racial sub-groups but it’s not so significant. We also
consider equalized odds demonstrated by equal TPR and FPR values. This means that our model performs equally well
for any of the sub-groups given. As seen in the table, both TPR and FPR are comparable among the gender sub-groups
and racial sub-groups. Another fairness metric is equalized opportunity, which measures how well the model performs
on just examples with positive labels by only considering the TPR, so it is implied by equalized odds. Overall, the
ensemble classifier aligns with the three fairness metrics considered.

7 Conclusion & Future Work

We presented a two-stage predictor for a patient’s LoS in a hospital that outperforms common baselines and more
complex models in this paper. We achieved this by recognizing that LoS distribution is highly skewed or unbalanced and
addressed the issue using oversampling and SMOTE. Inspired by existing studies, we broke the task into a classification
step using an ensemble of random forest and XGBoost, the best classifier found, and a regression step using XGBoost.
It is reasonable that the ensemble gives the best result over any single model by aggregating different types of errors and
potentially offering a more balanced bias-variance trade-off. Our classifier is also notable in its balanced accuracy which
benefits the regression step by guiding examples based on model confidence, mitigating prediction errors for longer
stays when we go through the pipeline. We also comprehensively examined the ensemble classifier’s performance
across different demographic sub-groups, assessing algorithmic fairness and ensuring that our model treats all patients
equitably across genders and racial backgrounds. Finally, our model takes relatively minimal time and computation to
train and run, making it accessible and cost-efficient, an important characteristic for a practical implementation.

For future work, we want to explore other ways of reducing prediction errors for long stays. Given more computation
power, we may apply both more sophisticated statistical methods that address imbalanced data and more complex deep
learning approaches that use additional features such as natural language, being pursued by state-of-the-art models such
as van Aken et al. (2021).
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8 Contributions

All authors worked on cleaning the data and literature review. Given overlap over each member’s work during the
collaborative process, the following describes the respective main contributions:

Pinlin [Calvin] Xu worked on researching and running experiments on ideas that did or did not work to improve upon
the baselines (oversampling, dimensionality reduction, outlier removal, etc.), producing plots/graphs, and managing
project progress, next ideas to implement, and assigning tasks. He is also responsible for much of the write-up leading
up to 4.1 detailing the rationale behind adopting the methodology.

Miguel Fuentes contributed with most of the code infrastructure to run all experiments, cleaning and combining the
datasets and creating the pipeline for the classification-regression model. He is also responsible for much of the
experiments and results section, the model performance results, graphs, and all diagrams in the write-up.

Lisa Liu worked on cleaning up the dataset in feature selection and deriving the SMOTE algorithm. She is responsible
for most of the mathematical derivations and the exposition of the write-up starting in section 4. She is also responsible
for researching and analyzing the algorithmic fairness of the models.
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